

Femap Analyze faster

Simcenter Femap v.2021.2 Introduction to Body Mesher Technology Webinar

Presenter: Tadeusz Chmielewski CEO of FEMComp Engineering AB

Restricted | © Siemens 2021 | 2021-06-04 | What's New in Simcenter Femap 2021.2 | Siemens Digital Industries Software | Where today meets tomorrow.

SIEMENS

Body Mesher Technology - Agenda

Faceted Geometry/Convergent Modeling

- Overview
- Import/Export and Identification
- Facet Body Operations

Body Mesher Technology

- Why Body Mesher?
- Traditional vs. Body Meshing Workflow
- Mesh, Bodies command
- Body Meshing Suggested Workflow
- Body Meshing Benefits
- Powerful Transition Meshing
- Mesh, Mesh on Mesh command

Faceted Geometry/Convergent Modeling Overview

FEMComp Engineering Focusing On FEA

Femap v2021.2 adds support for Parasolid Convergent Modeling

- Convergent Modeling works with facets, surfaces, and solids without any conversion
- This means you can import STL-file or scanned data to Femap as a convergent body then use traditional modeling commands
- You can then **create geometry** on or around the facet
- Faceted or Convergent Modeling **extends** Parasolid, and hence Femap's surface and solid modeling to include models where the underlying geometry is comprised of **triangular facets**

Faceted Geometry/Convergent Modeling Overview

Faceted or Convergent Modeling extends Parasolid, and hence Femap's surface and solid modeling to include models where the underlying geometry is comprised of triangular facets

<u>Note</u>: Femap doesn't support the **creation** of convergent models, it **does** support **import/export**, **editing** and **meshing**

Traditional Parasolid B-REP, faces of the solid are defined by underlying analytic and/or NURBS surfaces

In Convergent Modeling, the underlying surfaces are made up of triangular facets Convergent Models can contain a mixture of traditional and facetted faces

SIFMFNS

Faceted Geometry/Convergent Modeling Import/Export and Identification

Import/Export

<u>Text-Based Parasolid Files</u> .x_t – contains topology .m_t – contains the facets

<u>Binary</u>

 $.x_b - file$ includes both

Identification

Model Info Tree

Listings

Type: Solid Type: Solid Partial Mesh Type: Solid Full Mesh

Faceted Geometry/Convergent Modeling Facet Body Operations

Faceted Geometry/Convergent Modeling Facet Body Operations

Boolean Add/Subtract

Curve From Surface Project Normal

Curve From Surface Project Along Vector

Curve From Surface **UV Curves**

Curve From Surface Intersect

Pad and Washer

> **Curve From Surface** Slice

SIFMENS

Faceted Geometry/Convergent Modeling Surface Meshing Example

Challenge – Surface Mesh complex Additive Manufacturing design models with a quality Mesh

Answer – Triangle "Remeshing" technology from **STAR-CCM+**

The STAR-CCM+ **Triangle** Remesher **integrated** into FEMAP turns poorly shaped triangles into high quality triangles

During implementation, we also realized how well it can create a Quadrilateraldominant mesh, thus the result is Femap's new "**Body Mesher Technology**"

FEMComp Engineering

Body Mesher Technology Why Body Mesher?

Why did we decide to name this functionality the "Body Mesher"?

Because you mesh a Parasolid Body, which can either be a connected set of surfaces that form a single closed volume (**solid** body) or that do not a **sheet** body or **general** body

Commands which always use or optionally allow use of **Body Mesher** Technology:

- Mesh, Bodies (always)
- Mesh, Mesh on Mesh (always)
- Mesh, Geometry, Surface (optional)

Body Mesher Technology Traditional Meshing vs Body Meshing Workflow - Overview

Body Meshing can help to create very **high quality** meshes The workflow is very **different** from traditional meshing in FEMAP

Traditional Meshing Workflow

- Idealize geometry via Meshing Toolbox and/or Geometry Preparation to remove slivers and geometry problems
- Define **discrete**, highly customizable **mesh locations** on geometry
- Nodal locations are primary, guaranteed result, therefore the best quality mesh is sometimes compromised

Body Meshing Workflow

- Not Required, Body Mesher handles this via triangulation
- Define **Target Mesh Sizing**, along with Element **Quality** Targets and Tolerances
- Mesh quality is primary goal
- Node locations are therefore not guaranteed, as any discrete mesh sizes are targets

SIEMENS

Body Mesher Technology Traditional Meshing vs Body Meshing Workflow - Associativity

Because Nodes may or may not end up on curves and surfaces, geometry associativity is affected

Traditional Meshing Workflow

 Nodes and Elements are fully associated with Points, Curves and Surfaces of Surface and Solid Meshes

Body Meshing Workflow

- Nodes and Elements are only associated with Points, Curves, and Surface where there are existing Loads, Boundary Conditions, or Regions (including contact)
- Nodes and Elements can also be associated with additional Curves and Surfaces explicitly selected by user

Body Mesher Technology Mesh Bodies...

- Uses meshing methodologies which differ from Mesh, Geometry, Surface and Mesh, Geometry, Solid commands for creation of a higher quality mesh by imposing fewer restrictions when meshing geometric surfaces (sheet solids), solids, and general bodies
- Can create a 2-D surface mesh on a connected sheet solid (stitched body) or general body or a 3-D solid tetrahedral mesh in a solid part

Automesh Bodies				Х
Node and Element Options				
Node ID 1	CSys	0Global Rectangular V 🏹 🖽		
Elem ID 1	Property	1Solid V		
Mesh Type Geometry Curvature/Proximity Mesh Quality Tet Options				
⊖Tri OQuad ☑Tet Midside Nodes			Mesh Associativity On Associated Geometr	у
			All Geometry	
Mesh Sizing			Required Geometry Only	
Target Element Size	6,4889	3	Additional Selected Geometry	
Points Around Circle	8		Additional Geometry by Angle 30,	
			This command maximizes mesh quality by only following and attaching to geometry based on the options selected.	
✓ Min Element Size Factor	10,	%	Press F1 to learn more.	
Growth Factor	50,	%	OK Cancel	

Body Mesher Technology Mesh Bodies...

- Target Element Size will be computed to use for selected geometry based upon the average curve length of all edges in selected geometric entities <u>divided by 6</u>
- This parameter is used in conjunction with the other parameters in the Mesh Sizing section, along with the settings on the Geometry, Curvature/Proximity, and Mesh Quality to create either a triangular/quadrilateral surface or tetrahedral solid mesh
- When creating Tetrahedral Mesh on solids, Tetrahedral Mesher uses options specified on Tet Options tab

Mesh Type		Geometry Curvature/Proximity Mesh Quality Tet	Options
⊖Tri ⊖Quad	Midside Nodes	Mesh Associativity	On Associated Geometry
● Tet	• masiae nodes	◯ All Geometry	✓ Use Curve Sizing
Mesh Sizing		Required Geometry Only	
Target Element Size	6,48893	O Additional Selected Geometry	Use Sundee Sizing
Points Around Circle		Additional Geometry by Angle 30,	
		This command maximizes mesh quality by only following and	
Min Element Size Factor	10, %	Press F1 to learn more.	
Growth Factor	50, %		
		OK Cancel	

Mesh, Bodies more details can be found in *Commands Manual, Chapter 5.1.4 Mesh, Bodies*

Home > Commands > 5. Meshing > 5.1 Meshing on Geometry > 5.1.4 Mesh, Bodies.

5.1.4 Mesh, Bodies...

Body Mesher Technology Suggested Workflow

• Using **Body Mesher** to automatically remove sliver surfaces and capture local curvature in this part

Body Mesher Technology Suggested Workflow

 We also need associated geometry for a constraint applied to the holes, and to the circular imprint for later connection to additional mesh

Workflow Change – specify Loads, Boundary Conditions, Contact Regions, etc., **BEFORE Body Meshing**!

FEMComp Engineer

Body Mesher Technology Mesh Sizing Example

Body Mesher Technology Mesh Sizing Example

Traditional Enforced Mesh Locations

Traditional Mesh with Mesh Size refinement

Body Meshing with Target Size equal to Mesh Sizes from Traditional Mesh

Body Mesher Technology Body Meshing Cleanup Example

Automatic Geometry Preparation and Mesh

Manual Geometry Cleanup and Mesh

With **Body Meshing** - set **Target Size** and let the Mesher take care of everything else

Body Mesher Technology Body Meshing Benefits

Since triangular facets are all that are required for meshing, **new possibilities** are now available in **Femap**

"Clean" STL files can be used as the basis to create a high-quality surface mesh

Note: "Clean" STL files have:

- All facets fully connected
- No facets which overlap

Body Mesher Technology STL Surface Meshing Examples

Body Mesher Technology Body Meshing Benefits

Since triangular facets are all that are required for meshing, **new possibilities** are now available in **Femap**

STL facets of topology optimized shapes can be turned into useful tetrahedral meshes

FEMComp Engineer

Body Mesher Technology STL Solid Meshing Example

Body Mesher Technology Body Meshing Benefits

Automatic Cleanup and Defeaturing for Tetrahedral Meshing

To mesh this part in previous versions:

- First, use the "Mesh, Geometry Preparation" command
- Second, use various tools in the Meshing Toolbox to create the desired triangular surface mesh
- Finally, use "Mesh, Geometry, Solids from Elements" command to create Tet Mesh
- To mesh this part in 2021.2 and above
- Simply use "Mesh, Bodies" command

Body Mesher Technology Body Meshing Example

Automatic Cleanup and Defeaturing for Tetrahedral Meshing Traditional mesh of this part

- Mesh, Geometry Preparation command
- Triangular surface mesh
- Mesh, Geometry, Solids from Elements" command

Body Meshing in 2021.2

• Use Mesh, Bodies command

Body Mesher Technology Powerful Transition Meshing

Triangle and Quadrilateraldominant meshing via the Body Mesher also produces high-quality elements in transition areas where the element size changes to a large degree

 Example shows high density mesh enforced on the surfaces shown which transition to larger elements based on the overall target mesh size set for the rest of the part

Body Mesher Technology Mesh Bodies, Tet Solid Meshing Example

SIEMENS

Body Mesher Technology Quad Surface and Tet/Pyramid Solid Meshing Example

FEMComp Engineering Focusing On FEA

SIFMFNS

_					
	Automes	h Bodies			Autom
	Node and	Element Options			Node a
	Node ID	1	CSys	0Global Rec	Node II
	Elem ID	1	Property		Elem II
	Mesh Typ)e			Meshin
	◯Tri	Quad	— ———————————————————————————————————		Su
	(Tet	Midsid	e Nodes	⊖те
					<mark>⊚ ⊺e</mark>

Body Mesher Technology Mesh on Mesh

New **Mesh**, **Mesh** on **Mesh** command offers the ability to:

- Convert any triangulation generated from an existing mesh into a highquality triangle or quadrilateraldominant mesh
- **Specify** mesh sizing and surface curvature/proximity options
- Retain selected features of original mesh
- Create elements which attempt to satisfy user-defined element quality criteria

SIEMENS

FEMComp Engineer

Body Mesher Technology Mesh, Mesh on Mesh...

- Uses meshing methodologies as Mesh, Bodies command, only it uses existing triangular or quadrilateral elements as the starting point
- One other difference is this command cannot create Tetrahedral elements
- The elements can be **imported** or **built** directly inside of FEMAP
- Once the elements exist in FEMAP, they are selected using the standard entity selection dialog box

Automesh Bodies			×
Node and Element Options			
Node ID 952	CSys 0Global I	Rectangular	- 🎽 🖶 🛛 🛱
Elem ID 901	Property 1PLATE	Property	✓ 4.
Mesh Type		Mesh Features Curvature/Proximity Mesh C	2uality
O Tri O Quad	Midside Nodes	Element Attributes to Retain Property Color	Feature Control Edge Break 15, deg
Target Element Size	13,13173	Corner Thickness	Connectivity
Points Around Circle	8	Offset Associativity	✓ Merge Nodes
Min Element Size Factor	10, %		
Growth Factor	50, %	ОК	Cancel

Body Mesher Technology Mesh, Mesh on Mesh...

- Once sections of elements have been selected, **Automesh Bodies** dialog box will be displayed
- Target Element Size will be computed to use for the selected elements based upon the average edge length of the selected elements
- This parameter is used in conjunction with the other parameters in the Mesh Sizing section, along with the settings on the Mesh Features, Curvature/Proximity, and Mesh Quality to create either a triangular/quadrilateral mesh which will replace an existing mesh

Mesh Type	Mesh Features Curvature/Proximity Mesh C	Quality	 Mesh, Mesh on Mesh more
◯ Tri	Element Attributes to Retain	Feature Control	details can be found in
OTet	Property Color	Edge Break 15, deg	Commands Manual, Chapter
Mesh Sizing	Element Type	Keep Mesh on Free Edges	5.1.5 Mesh, Mesh on Mesh
Target Element Size	Corner Thickness	Connectivity	
Points Around Circle 8	✓ Offset Associativity	✓ Merge Nodes	Home > Commands > 5. Meshing > 5.1 Meshing on Geometry > 5.1.5 Mesh, Mesh on Mesh
Min Element Size Factor 10, %	✓ Normal Direction		Б[®] Femap[®]
Growth Factor 50, %	ОК	Cancel	

Body Mesher Technology Mesh on Mesh – Mesh Refinement

Body Mesher Technology Mesh on Mesh Example

Initial Mesh using Mesh, Geometry, Surface...

Body Mesher Technology Mesh on Mesh Example

Mesh On Mesh – initial Target Element Size for whole model with Associativity to geometry

FEMComp Engineering

Body Mesher Technology Mesh on Mesh Example

Mesh On Mesh – refined Mesh Sizing for whole model

Automesh Bodies			×
Node and Element Options			
Node ID 2552 CSys	s 0Global Re	- 🍾 🖶 🖷	
Elem ID 2420 Prop	erty 1PLATE Pr	operty	✓ 4
Mesh Type		Mesh Features Curvature/Proximity Mesh C	Quality
 ○ Tri ● Quad ○ Tet Mesh Sizing Target Element Size ✓ Points Around Circle ✓ Points around Circle 	Aidside Nodes	Element Attributes to Retain Property Element Type Corner Thickness Offset Normal Direction	Feature Control Edge Break 15, deg Keep Mesh on Free Edges Connectivity Merge Nodes
Growth Factor	0, %		
		ОК	Cancel

FEMComp Engineering

Mesh on Mesh – refined Mesh Sizing specified for selected sections

SIFMENS

Body Mesher Technology Mesh Bodies Solid Assembly Example

Mesh Bodies – initial Mesh Sizing, Tetra and Tetra/Pyramid Solid Mesh

Sincenter Femap v.2021.2 Body Mesher Technology Thank you!

SIEMENS

Restricted | © Siemens 2021 | 2021-06-04 | What's New in Simcenter Femap 2021.2 | Siemens Digital Industries Software | Where today meets tomorrow.